Copied to
clipboard

G = C22×D59order 472 = 23·59

Direct product of C22 and D59

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×D59, C59⋊C23, C118⋊C22, (C2×C118)⋊3C2, SmallGroup(472,11)

Series: Derived Chief Lower central Upper central

C1C59 — C22×D59
C1C59D59D118 — C22×D59
C59 — C22×D59
C1C22

Generators and relations for C22×D59
 G = < a,b,c,d | a2=b2=c59=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

59C2
59C2
59C2
59C2
59C22
59C22
59C22
59C22
59C22
59C22
59C23

Smallest permutation representation of C22×D59
On 236 points
Generators in S236
(1 226)(2 227)(3 228)(4 229)(5 230)(6 231)(7 232)(8 233)(9 234)(10 235)(11 236)(12 178)(13 179)(14 180)(15 181)(16 182)(17 183)(18 184)(19 185)(20 186)(21 187)(22 188)(23 189)(24 190)(25 191)(26 192)(27 193)(28 194)(29 195)(30 196)(31 197)(32 198)(33 199)(34 200)(35 201)(36 202)(37 203)(38 204)(39 205)(40 206)(41 207)(42 208)(43 209)(44 210)(45 211)(46 212)(47 213)(48 214)(49 215)(50 216)(51 217)(52 218)(53 219)(54 220)(55 221)(56 222)(57 223)(58 224)(59 225)(60 122)(61 123)(62 124)(63 125)(64 126)(65 127)(66 128)(67 129)(68 130)(69 131)(70 132)(71 133)(72 134)(73 135)(74 136)(75 137)(76 138)(77 139)(78 140)(79 141)(80 142)(81 143)(82 144)(83 145)(84 146)(85 147)(86 148)(87 149)(88 150)(89 151)(90 152)(91 153)(92 154)(93 155)(94 156)(95 157)(96 158)(97 159)(98 160)(99 161)(100 162)(101 163)(102 164)(103 165)(104 166)(105 167)(106 168)(107 169)(108 170)(109 171)(110 172)(111 173)(112 174)(113 175)(114 176)(115 177)(116 119)(117 120)(118 121)
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 97)(12 98)(13 99)(14 100)(15 101)(16 102)(17 103)(18 104)(19 105)(20 106)(21 107)(22 108)(23 109)(24 110)(25 111)(26 112)(27 113)(28 114)(29 115)(30 116)(31 117)(32 118)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(51 78)(52 79)(53 80)(54 81)(55 82)(56 83)(57 84)(58 85)(59 86)(119 196)(120 197)(121 198)(122 199)(123 200)(124 201)(125 202)(126 203)(127 204)(128 205)(129 206)(130 207)(131 208)(132 209)(133 210)(134 211)(135 212)(136 213)(137 214)(138 215)(139 216)(140 217)(141 218)(142 219)(143 220)(144 221)(145 222)(146 223)(147 224)(148 225)(149 226)(150 227)(151 228)(152 229)(153 230)(154 231)(155 232)(156 233)(157 234)(158 235)(159 236)(160 178)(161 179)(162 180)(163 181)(164 182)(165 183)(166 184)(167 185)(168 186)(169 187)(170 188)(171 189)(172 190)(173 191)(174 192)(175 193)(176 194)(177 195)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59)(60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118)(119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177)(178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236)
(1 148)(2 147)(3 146)(4 145)(5 144)(6 143)(7 142)(8 141)(9 140)(10 139)(11 138)(12 137)(13 136)(14 135)(15 134)(16 133)(17 132)(18 131)(19 130)(20 129)(21 128)(22 127)(23 126)(24 125)(25 124)(26 123)(27 122)(28 121)(29 120)(30 119)(31 177)(32 176)(33 175)(34 174)(35 173)(36 172)(37 171)(38 170)(39 169)(40 168)(41 167)(42 166)(43 165)(44 164)(45 163)(46 162)(47 161)(48 160)(49 159)(50 158)(51 157)(52 156)(53 155)(54 154)(55 153)(56 152)(57 151)(58 150)(59 149)(60 193)(61 192)(62 191)(63 190)(64 189)(65 188)(66 187)(67 186)(68 185)(69 184)(70 183)(71 182)(72 181)(73 180)(74 179)(75 178)(76 236)(77 235)(78 234)(79 233)(80 232)(81 231)(82 230)(83 229)(84 228)(85 227)(86 226)(87 225)(88 224)(89 223)(90 222)(91 221)(92 220)(93 219)(94 218)(95 217)(96 216)(97 215)(98 214)(99 213)(100 212)(101 211)(102 210)(103 209)(104 208)(105 207)(106 206)(107 205)(108 204)(109 203)(110 202)(111 201)(112 200)(113 199)(114 198)(115 197)(116 196)(117 195)(118 194)

G:=sub<Sym(236)| (1,226)(2,227)(3,228)(4,229)(5,230)(6,231)(7,232)(8,233)(9,234)(10,235)(11,236)(12,178)(13,179)(14,180)(15,181)(16,182)(17,183)(18,184)(19,185)(20,186)(21,187)(22,188)(23,189)(24,190)(25,191)(26,192)(27,193)(28,194)(29,195)(30,196)(31,197)(32,198)(33,199)(34,200)(35,201)(36,202)(37,203)(38,204)(39,205)(40,206)(41,207)(42,208)(43,209)(44,210)(45,211)(46,212)(47,213)(48,214)(49,215)(50,216)(51,217)(52,218)(53,219)(54,220)(55,221)(56,222)(57,223)(58,224)(59,225)(60,122)(61,123)(62,124)(63,125)(64,126)(65,127)(66,128)(67,129)(68,130)(69,131)(70,132)(71,133)(72,134)(73,135)(74,136)(75,137)(76,138)(77,139)(78,140)(79,141)(80,142)(81,143)(82,144)(83,145)(84,146)(85,147)(86,148)(87,149)(88,150)(89,151)(90,152)(91,153)(92,154)(93,155)(94,156)(95,157)(96,158)(97,159)(98,160)(99,161)(100,162)(101,163)(102,164)(103,165)(104,166)(105,167)(106,168)(107,169)(108,170)(109,171)(110,172)(111,173)(112,174)(113,175)(114,176)(115,177)(116,119)(117,120)(118,121), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,113)(28,114)(29,115)(30,116)(31,117)(32,118)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,85)(59,86)(119,196)(120,197)(121,198)(122,199)(123,200)(124,201)(125,202)(126,203)(127,204)(128,205)(129,206)(130,207)(131,208)(132,209)(133,210)(134,211)(135,212)(136,213)(137,214)(138,215)(139,216)(140,217)(141,218)(142,219)(143,220)(144,221)(145,222)(146,223)(147,224)(148,225)(149,226)(150,227)(151,228)(152,229)(153,230)(154,231)(155,232)(156,233)(157,234)(158,235)(159,236)(160,178)(161,179)(162,180)(163,181)(164,182)(165,183)(166,184)(167,185)(168,186)(169,187)(170,188)(171,189)(172,190)(173,191)(174,192)(175,193)(176,194)(177,195), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59)(60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118)(119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177)(178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236), (1,148)(2,147)(3,146)(4,145)(5,144)(6,143)(7,142)(8,141)(9,140)(10,139)(11,138)(12,137)(13,136)(14,135)(15,134)(16,133)(17,132)(18,131)(19,130)(20,129)(21,128)(22,127)(23,126)(24,125)(25,124)(26,123)(27,122)(28,121)(29,120)(30,119)(31,177)(32,176)(33,175)(34,174)(35,173)(36,172)(37,171)(38,170)(39,169)(40,168)(41,167)(42,166)(43,165)(44,164)(45,163)(46,162)(47,161)(48,160)(49,159)(50,158)(51,157)(52,156)(53,155)(54,154)(55,153)(56,152)(57,151)(58,150)(59,149)(60,193)(61,192)(62,191)(63,190)(64,189)(65,188)(66,187)(67,186)(68,185)(69,184)(70,183)(71,182)(72,181)(73,180)(74,179)(75,178)(76,236)(77,235)(78,234)(79,233)(80,232)(81,231)(82,230)(83,229)(84,228)(85,227)(86,226)(87,225)(88,224)(89,223)(90,222)(91,221)(92,220)(93,219)(94,218)(95,217)(96,216)(97,215)(98,214)(99,213)(100,212)(101,211)(102,210)(103,209)(104,208)(105,207)(106,206)(107,205)(108,204)(109,203)(110,202)(111,201)(112,200)(113,199)(114,198)(115,197)(116,196)(117,195)(118,194)>;

G:=Group( (1,226)(2,227)(3,228)(4,229)(5,230)(6,231)(7,232)(8,233)(9,234)(10,235)(11,236)(12,178)(13,179)(14,180)(15,181)(16,182)(17,183)(18,184)(19,185)(20,186)(21,187)(22,188)(23,189)(24,190)(25,191)(26,192)(27,193)(28,194)(29,195)(30,196)(31,197)(32,198)(33,199)(34,200)(35,201)(36,202)(37,203)(38,204)(39,205)(40,206)(41,207)(42,208)(43,209)(44,210)(45,211)(46,212)(47,213)(48,214)(49,215)(50,216)(51,217)(52,218)(53,219)(54,220)(55,221)(56,222)(57,223)(58,224)(59,225)(60,122)(61,123)(62,124)(63,125)(64,126)(65,127)(66,128)(67,129)(68,130)(69,131)(70,132)(71,133)(72,134)(73,135)(74,136)(75,137)(76,138)(77,139)(78,140)(79,141)(80,142)(81,143)(82,144)(83,145)(84,146)(85,147)(86,148)(87,149)(88,150)(89,151)(90,152)(91,153)(92,154)(93,155)(94,156)(95,157)(96,158)(97,159)(98,160)(99,161)(100,162)(101,163)(102,164)(103,165)(104,166)(105,167)(106,168)(107,169)(108,170)(109,171)(110,172)(111,173)(112,174)(113,175)(114,176)(115,177)(116,119)(117,120)(118,121), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,113)(28,114)(29,115)(30,116)(31,117)(32,118)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,85)(59,86)(119,196)(120,197)(121,198)(122,199)(123,200)(124,201)(125,202)(126,203)(127,204)(128,205)(129,206)(130,207)(131,208)(132,209)(133,210)(134,211)(135,212)(136,213)(137,214)(138,215)(139,216)(140,217)(141,218)(142,219)(143,220)(144,221)(145,222)(146,223)(147,224)(148,225)(149,226)(150,227)(151,228)(152,229)(153,230)(154,231)(155,232)(156,233)(157,234)(158,235)(159,236)(160,178)(161,179)(162,180)(163,181)(164,182)(165,183)(166,184)(167,185)(168,186)(169,187)(170,188)(171,189)(172,190)(173,191)(174,192)(175,193)(176,194)(177,195), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59)(60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118)(119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177)(178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236), (1,148)(2,147)(3,146)(4,145)(5,144)(6,143)(7,142)(8,141)(9,140)(10,139)(11,138)(12,137)(13,136)(14,135)(15,134)(16,133)(17,132)(18,131)(19,130)(20,129)(21,128)(22,127)(23,126)(24,125)(25,124)(26,123)(27,122)(28,121)(29,120)(30,119)(31,177)(32,176)(33,175)(34,174)(35,173)(36,172)(37,171)(38,170)(39,169)(40,168)(41,167)(42,166)(43,165)(44,164)(45,163)(46,162)(47,161)(48,160)(49,159)(50,158)(51,157)(52,156)(53,155)(54,154)(55,153)(56,152)(57,151)(58,150)(59,149)(60,193)(61,192)(62,191)(63,190)(64,189)(65,188)(66,187)(67,186)(68,185)(69,184)(70,183)(71,182)(72,181)(73,180)(74,179)(75,178)(76,236)(77,235)(78,234)(79,233)(80,232)(81,231)(82,230)(83,229)(84,228)(85,227)(86,226)(87,225)(88,224)(89,223)(90,222)(91,221)(92,220)(93,219)(94,218)(95,217)(96,216)(97,215)(98,214)(99,213)(100,212)(101,211)(102,210)(103,209)(104,208)(105,207)(106,206)(107,205)(108,204)(109,203)(110,202)(111,201)(112,200)(113,199)(114,198)(115,197)(116,196)(117,195)(118,194) );

G=PermutationGroup([[(1,226),(2,227),(3,228),(4,229),(5,230),(6,231),(7,232),(8,233),(9,234),(10,235),(11,236),(12,178),(13,179),(14,180),(15,181),(16,182),(17,183),(18,184),(19,185),(20,186),(21,187),(22,188),(23,189),(24,190),(25,191),(26,192),(27,193),(28,194),(29,195),(30,196),(31,197),(32,198),(33,199),(34,200),(35,201),(36,202),(37,203),(38,204),(39,205),(40,206),(41,207),(42,208),(43,209),(44,210),(45,211),(46,212),(47,213),(48,214),(49,215),(50,216),(51,217),(52,218),(53,219),(54,220),(55,221),(56,222),(57,223),(58,224),(59,225),(60,122),(61,123),(62,124),(63,125),(64,126),(65,127),(66,128),(67,129),(68,130),(69,131),(70,132),(71,133),(72,134),(73,135),(74,136),(75,137),(76,138),(77,139),(78,140),(79,141),(80,142),(81,143),(82,144),(83,145),(84,146),(85,147),(86,148),(87,149),(88,150),(89,151),(90,152),(91,153),(92,154),(93,155),(94,156),(95,157),(96,158),(97,159),(98,160),(99,161),(100,162),(101,163),(102,164),(103,165),(104,166),(105,167),(106,168),(107,169),(108,170),(109,171),(110,172),(111,173),(112,174),(113,175),(114,176),(115,177),(116,119),(117,120),(118,121)], [(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,97),(12,98),(13,99),(14,100),(15,101),(16,102),(17,103),(18,104),(19,105),(20,106),(21,107),(22,108),(23,109),(24,110),(25,111),(26,112),(27,113),(28,114),(29,115),(30,116),(31,117),(32,118),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(51,78),(52,79),(53,80),(54,81),(55,82),(56,83),(57,84),(58,85),(59,86),(119,196),(120,197),(121,198),(122,199),(123,200),(124,201),(125,202),(126,203),(127,204),(128,205),(129,206),(130,207),(131,208),(132,209),(133,210),(134,211),(135,212),(136,213),(137,214),(138,215),(139,216),(140,217),(141,218),(142,219),(143,220),(144,221),(145,222),(146,223),(147,224),(148,225),(149,226),(150,227),(151,228),(152,229),(153,230),(154,231),(155,232),(156,233),(157,234),(158,235),(159,236),(160,178),(161,179),(162,180),(163,181),(164,182),(165,183),(166,184),(167,185),(168,186),(169,187),(170,188),(171,189),(172,190),(173,191),(174,192),(175,193),(176,194),(177,195)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59),(60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118),(119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177),(178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236)], [(1,148),(2,147),(3,146),(4,145),(5,144),(6,143),(7,142),(8,141),(9,140),(10,139),(11,138),(12,137),(13,136),(14,135),(15,134),(16,133),(17,132),(18,131),(19,130),(20,129),(21,128),(22,127),(23,126),(24,125),(25,124),(26,123),(27,122),(28,121),(29,120),(30,119),(31,177),(32,176),(33,175),(34,174),(35,173),(36,172),(37,171),(38,170),(39,169),(40,168),(41,167),(42,166),(43,165),(44,164),(45,163),(46,162),(47,161),(48,160),(49,159),(50,158),(51,157),(52,156),(53,155),(54,154),(55,153),(56,152),(57,151),(58,150),(59,149),(60,193),(61,192),(62,191),(63,190),(64,189),(65,188),(66,187),(67,186),(68,185),(69,184),(70,183),(71,182),(72,181),(73,180),(74,179),(75,178),(76,236),(77,235),(78,234),(79,233),(80,232),(81,231),(82,230),(83,229),(84,228),(85,227),(86,226),(87,225),(88,224),(89,223),(90,222),(91,221),(92,220),(93,219),(94,218),(95,217),(96,216),(97,215),(98,214),(99,213),(100,212),(101,211),(102,210),(103,209),(104,208),(105,207),(106,206),(107,205),(108,204),(109,203),(110,202),(111,201),(112,200),(113,199),(114,198),(115,197),(116,196),(117,195),(118,194)]])

124 conjugacy classes

class 1 2A2B2C2D2E2F2G59A···59AC118A···118CI
order1222222259···59118···118
size1111595959592···22···2

124 irreducible representations

dim11122
type+++++
imageC1C2C2D59D118
kernelC22×D59D118C2×C118C22C2
# reps1612987

Matrix representation of C22×D59 in GL4(𝔽709) generated by

708000
070800
0010
0001
,
708000
0100
0010
0001
,
1000
0100
00311
00591568
,
708000
0100
00568708
0028141
G:=sub<GL(4,GF(709))| [708,0,0,0,0,708,0,0,0,0,1,0,0,0,0,1],[708,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,31,591,0,0,1,568],[708,0,0,0,0,1,0,0,0,0,568,28,0,0,708,141] >;

C22×D59 in GAP, Magma, Sage, TeX

C_2^2\times D_{59}
% in TeX

G:=Group("C2^2xD59");
// GroupNames label

G:=SmallGroup(472,11);
// by ID

G=gap.SmallGroup(472,11);
# by ID

G:=PCGroup([4,-2,-2,-2,-59,7427]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^59=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C22×D59 in TeX

׿
×
𝔽